111是质数吗(小学数学知识点“数的整除”)

2024-10-15 08:01:11 家电

今天为大家带来的是小学数学知识点“数的整除”。

1、整除的意义

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。

2、约数和倍数

⑴ 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

⑵ 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

⑶ 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、奇数和偶数

⑴ 自然数按能否被2 整除的特征可分为奇数和偶数。

① 能被2整除的数叫做偶数。0也是偶数。

② 不能被2整除的数叫做奇数。

⑵ 奇数和偶数的运算性质:

① 相邻两个自然数之和是奇数,之积是偶数。

② 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,

奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

4、整除的特征

⑴ 个位上是0、2、4、6、8的数,都能被2整除。

⑵ 个位上是0或5的数,都能被5整除。

⑶ 一个数的各位上的数的和能被3整除,这个数就能被3整除。

⑷ 一个数各位数上的和能被9整除,这个数就能被9整除。

⑸ 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

⑹ 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

⑺ 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

5、质数和合数

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。111不是质数

⑵ 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

⑶ 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

6、分解质因数

⑴ 质因数

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

⑵ 分解质因数

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

⑶ 公因(约)数

几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。

公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;

②相邻的两个自然数互质;

③当合数不是质数的倍数时,这个合数和这个质数互质;

④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

⑷ 公倍数

① 几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。

求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

小学生们,今天学的“数的整除”,有新的收获么?